Новая занимательная астрономия - Страница 42


К оглавлению

42

В частности, согласно этой теории в сильном гравитационном поле течение времени замедляется. Поэтому для внешнего наблюдателя процесс падения какого-либо тела в черную дыру должен протекать бесконечно длительное время. Для такого наблюдателя процесс сжатия вещества фактически останавливается при приближении к гравитационному радиусу. Иную картину увидел бы воображаемый наблюдатель, падающий вместе с веществом в черную дыру. Он за конечный промежуток времени достиг бы гравитационного радиуса и продолжал падать к центру черной дыры. То же самое происходит и с коллапсирующим веществом: перейдя через гравитационный радиус, оно продолжает сжиматься дальше.

Согласно выводам современной теоретической астрофизики, черные дыры могут быть заключительными этапами в жизни массивных звезд. Пока в центральной части звезды работает источник энергии, высокая температура приводит к расширению газа, который стремится „раздвинуть“ вышележащие слои. В то же время колоссальная сила тяготения звезды „тянет“ эти слои к центру. Но после того, как „горючее“ в недрах звезды оказывается полностью израсходованным, температура в ее центральной части постепенно понижается. Равновесие нарушается и под действием собственного притяжения звезда начинает сжиматься. Ее дальнейшая судьба зависит от величины массы. Как показывают подсчеты, если звезда в 3–5 раз массивнее Солнца, то ее сжатие на заключительном этапе может привести к гравитационному коллапсу и образованию черной дыры.

Несколько лет назад был обнаружен космический объект в созвездии Лебедя, который вполне возможно является черной дырой. Это темный объект с массой, равной четырнадцати массам Солнца. Впрочем, окончательное доказательство того, что объект в Лебеде действительно черная дыра, еще впереди.

В то же время все чаще высказываются предположения о том, что в ядрах галактик и в квазарах могут находиться сверхмассивные черные дыры, которые и являются источниками активности этих космических объектов.

Такие черные дыры способны втягивать в себя окружающее вещество, энергия движения которого в гравитационном поле может перерабатываться в другие виды энергии. В частности, было сделано интересное открытие, связанное с галактикой М 87 (радиоисточник Дева А), давно привлекающей к себе внимание. На фотографии этой галактики отчетливо видна выброшенная из ядра струя, состоящая из нескольких отдельных газовых сгустков с общей массой около 10 миллионов солнечных масс и движущихся со скоростью порядка 3000 км/с. Это говорит о большой силе взрыва, который произошел в ядре.

Наблюдения показали: если на некотором расстоянии от ядра распределение вещества в М 87 соответствует обычному распределению звезд в галактиках, то вблизи центра в очень небольшом объеме сконцентрирована колоссальная слабосветящаяся масса, равная 6 миллиардам солнечных масс. Возможно, это гигантская черная дыра, возбуждающая активность ядра, а может быть, очень плотное образование еще неизвестной нам природы.

Вселенная и нейтрино

Мы уже не раз прямо или косвенно отмечали тесную связь физики и астрофизики. С одной стороны, Вселенная становится лабораторией современной физики. А с другой, — новые физические открытия, в той или иной степени вызванные к жизни астрофизическими исследованиями и астрономическими проблемами, в свою очередь оказывают неизбежное влияние на дальнейшее развитие астрономических представлений. Такова своеобразная обратная связь во взаимоотношениях и взаимопроникновении этих наук, такова диалектика познания!

Среди двухсот с лишним элементарных частиц, известных современным физикам, есть удивительная частица нейтрино. Согласно существовавшим длительное время теоретическим представлениям, эта частица лишена так называемой массы покоя — она всегда движется со скоростью, в точности равной скорости света. Однако с другой стороны, теория не накладывала никаких запретов и на возможность существования у нейтрино массы, отличной от нуля. Это обстоятельство и побудило группу ученых в Институте теоретической и экспериментальной физики АН СССР провести ряд экспериментов по выяснению действительной величины массы так называемых электронных нейтрино. Результат, пока правда предварительный, оказался в какой-то мере сенсационным: ученые пришли к выводу, что масса нейтрино не равна нулю, а составляет в энергетических единицах от 14 до 16 электрон-вольт. Масса не столь большая — в пределах от одной тридцатитысячной до одной десятитысячной массы электрона, но сам факт ее существования, если он подтвердится, повлечет за собой весьма серьезные последствия для наших представлений о Вселенной…

Одной из актуальных проблем современной астрономии является проблема внутрисолнечной и внутризвездной энергии. До недавнего времени считалось, что источником этой энергии являются термоядерные реакции синтеза гелия из водорода. И это представление настолько устоялось, что считалось одной из бесспорных идей современной астрофизики. И вдруг — сомнение!..

Мы уже говорили о том, что если в недрах нашего дневного светила действительно протекает термоядерная реакция, там должны рождаться нейтрино. Благодаря колоссальной проникающей способности, которой обладают эти частицы, весьма слабо взаимодействующие с веществом, они будут свободно „вырываться“ в околосолнечное пространство и определенная их часть достигнет Земли. Была построена специальная установка для регистрации солнечных нейтрино и проводились наблюдения. Однако результат был в высшей степени неожиданным: поток нейтрино оказался в несколько раз меньше предсказываемого теорией. Как отмечалось выше, для объяснения этого явления был предложен ряд гипотез, вплоть до предположения о том, что основным источником энергии Солнца и звезд служат не термоядерные реакции, а какие-то иные, быть может еще неизвестные нам физические процессы. Вопрос до сих пор остается открытым.

42